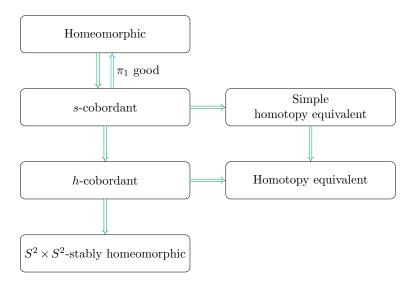
Georgia International Topology Conference Classification of 4-manifolds

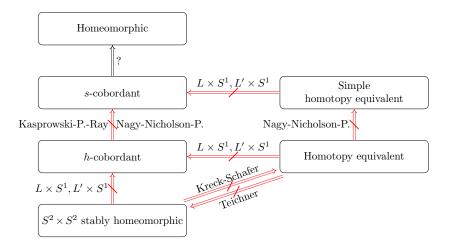
Mark Powell

28th May 2025

What classifications might be possible? What are the relationships between them?

In this talk X and X' will denote closed, oriented 4-manifolds. We do not assume manifolds are smooth unless stated.





Elaboration on two counterexamples.

Theorem (Atiyah-Bott, Turaev, Kwasik-Schultz)

Let L and L' be 3-dimensional lens spaces that are homotopy equivalent but not homeomorphic. Then $L \times S^1$ and $L' \times S^1$ are simple homotopy equivalent and stably homeomorphic but not h-cobordant. Let E be the S^2 -bundle over \mathbb{RP}^2 that is orientable but not spin. We can define *E via

$$E#*\mathbb{CP}^2\cong *E\#\mathbb{CP}^2.$$

Theorem (Teichner)

E#E and *E#*E are simple homotopy equivalent but not stably homeomorphic.

Theorem (Kasprowski-P.-Ray) *E#*E is smoothable. Now focus on classification up to homotopy equivalence and up to homeomorphism, starting with the simply-connected case.

Theorem (Whitehead 49)

Suppose X and X' are simply-connected. Then $\lambda_X \cong \lambda_{X'}$ if and only if $X \simeq X'$.

$$egin{aligned} \lambda_X\colon H_2(X) imes H_2(X)& o \mathbb{Z}\ & (x,y)\mapsto \langle PD^{-1}(y),x
angle \end{aligned}$$

Theorem (Freedman 82) Suppose $X \simeq X'$ are simply-connected. Then $ks(X) = ks(X') \in \mathbb{Z}/2$ if and only if $X \cong X'$. What is the analogue of $\lambda_X : H_2(X) \times H_2(X) \to \mathbb{Z}$ in the non-simply-connected case?

The quadratic 2-type is:

$$Q(X) = [\pi_1(X), \pi_2(X), k_X, \lambda_X].$$

Let $\pi := \pi_1(X)$. Then we consider $\pi_2(X)$ as a $\mathbb{Z}\pi$ -module.

$$\lambda_X \colon \pi_2(X) \times \pi_2(X) \to \mathbb{Z}\pi$$

is the equivariant intersection form. Finally

$$k_X \in H^3(\pi; \pi_2(X))$$

classifies the fibration

$$K(\pi_2(X),2) \rightarrow P_2(X) \rightarrow K(\pi,1)$$

where $P_2(X)$ is the Postnikov 2-type.

If
$$Q(X) \cong Q(X')$$
 is $X \simeq X'$?

In general, no. For L and L' not homotopy equivalent lens spaces, but $\pi_1(L) \cong \pi_1(L')$, $Q(L \times S^1) \cong Q(L' \times S^1)$ but $L \times S^1$ and $L' \times S^1$ are not homotopy equivalent.

If
$$X \simeq X'$$
 and $ks(X) = ks(X')$, is $X \cong X'$?

In general no, as shown by E#E and *E#*E.

But in many cases, yes; see the following table. But note extra invariant needed for $\pi = D_{\infty}$, as explained later. Also more is needed when $\partial X \neq \emptyset$.

Fundamental group	Closed	$\partial \neq \emptyset$	\simeq or \cong	Realisation?
{1}	Freedman 82	Boyer 86	≅	1
Z	Freedman-Quinn 90	Conway-P. 21 Conway-PPiccirillo 23 Conway-Kasprowski 25	2	1
4-periodic cohomology	Hambleton-Kreck 88	?	~	×
\mathbb{Z}/n	Hambleton-Kreck 93	?	≅	1
Geom. 2-dim. WAA hyp.	Hambleton-Kreck- Teichner 08	Conway-Kasprowski 25	$\simeq + \simeq$	×
Solvable Baumslag- Solitar $\mathbb{Z} \ltimes \mathbb{Z}[\frac{1}{m}]$	Hambleton-Kreck- Teichner 08	Conway-Kasprowski 25	≊	1
2-Sylow $\mathbb{Z}/2^n \oplus \mathbb{Z}/2^m$	Kasprowski-PRuppik 20	?	~	×
2-Sylow D _n	Kasprowski-Nicholson- Ruppik 21	?	~	×
π ₁ aspherical 4-manifold	Kasprowski-Land 20 Degree one hyp.	Davis-Kasprowski-P. 25	$\simeq + \cong$	x
$\pi_1(Y^3)$ s.t. finite subgroups cyclic	Hillman-Kasprowski-P Ray 25	Conway-Kasprowski 25	~	×
D_{∞}	Hillman-Kasprowski-P Ray 25	?	≅	×

TARLE 1. Known and soon to appear homotopy \simeq and homeomorphism \cong classifications of oriented 4-manifolds. The notation $\simeq + \cong$ indicates that the classification is a homotopy classification in general, and a homeomorphism classification for good groups. The realisation column asks whether it is known which values of Q(X) are realised (plus any extra needed invariants when $\partial X \neq \emptyset$). Next I will elaborate on the last two rows.

Theorem (Hillman-Kasprowski-P.-Ray) Suppose $\pi = \pi_1(Y^3) = \pi_1(X) = \pi_1(X')$, where Y is a closed, oriented 3-manifold, such that every finite subgroup of π is cyclic. Then

$$Q(X) \cong Q(X') \Leftrightarrow X \simeq X'.$$

Theorem (Hillman-Kasprowski-P.-Ray)

If in addition π is solvable and torsion-free, then there are at most two 4-manifolds, up to homeomorphism, with fixed Q and ks.

Now restrict to $\pi = D_{\infty} = \mathbb{Z}/2 * \mathbb{Z}/2 = \pi_1(\mathbb{RP}^3 \# \mathbb{RP}^3)$, and seek a homeomorphism classification.

Need an extra invariant, $s(X) \in \mathbb{Z}/2 \times \mathbb{Z}/2$, due to Kreck-Lück-Teichner. Let \widetilde{X} be the universal cover.

If
$$w_2(\widetilde{X}) \neq 0$$
, define $s(X) = 0$. If $w_2(\widetilde{X}) = 0$, consider
 $f: X \to BD_{\infty} \simeq \mathbb{RP}^{\infty} \lor [0, 1] \lor \mathbb{RP}^{\infty}$

and let $N := f^{-1}(1/2)$. Then $X = P_1 \cup_N P_2$. Since N lifts to \widetilde{X} it is spin. Then N bounds a spin 4-manifold Q. Let

$$R_i := P_i \cup_N Q$$

for i = 0, 1. Define

$$s(X) = \left(\sigma(R_1)/8 + \mathsf{ks}(R_1), \sigma(R_2)/8 + \mathsf{ks}(R_2)\right) \in \mathbb{Z}/2 imes \mathbb{Z}/2$$

Let *F* be the unique spin S^2 -bundle over \mathbb{RP}^2 . The 4-manifolds *E* and *E were defined above.

<u>x</u>	E#E	F#F	*E#*E	E#*E
ks(X)	0	0	0	1
$s(X, \alpha)$	(0,0)	(0,0)	(1,1)	(0,1)

Theorem (Hillman-Kasprowski-P.-Ray)

Let X and X' be closed, oriented 4-manifolds with fundamental group D_{∞} . Suppose

1.
$$Q(X) \cong Q(X');$$

2.
$$\operatorname{ks}(X) = \operatorname{ks}(X') \in \mathbb{Z}/2;$$

3.
$$s(X) = s(X') \in \mathbb{Z}/2 \times \mathbb{Z}/2$$
.

Then $X \cong X'$.

Partial *k*-invariant free classification.

Theorem (Hillman-Kasprowski-P.-Ray)

Let X and X' be closed, oriented, smooth 4-manifolds with fundamental group D_{∞} . Suppose

$$\lambda_X \cong \lambda_{X'} \cong H(ID_\infty) \oplus \theta$$

where $H(ID_{\infty})$ is the hyperbolic form on the augmentation ideal ID_{∞} and θ is a form on a stably free $\mathbb{Z}D_{\infty}$ -module. Then:

(i)
$$X \# \mathbb{CP}^2 \cong X' \# \mathbb{CP}^2$$
 (or $\overline{\mathbb{CP}}^2$).

 (ii) If the universal covers of X and X' are spin and the w₂-types in H²(D_∞; Z/2) are equal, then X ≅ X'.